Combining vibration test with finite element analysis for the fatigue life estimation of PBGA components

نویسندگان

  • Y. S. Chen
  • C. S. Wang
  • Y. J. Yang
چکیده

The study develops a methodology that combines the vibration failure test, finite element analysis (FEA), and theoretical formulation for the calculation of the electronic component’s fatigue life under vibration loading. A specially designed plastic ball grid array (PBGA) component with built-in daisy chain circuits is mounted on a printed wiring board (PWB) as the test vehicle for the vibration test. It is then excited by a sinusoidal vibration whose frequency equals the fundamental frequency of the test vehicle and tested until the component fails. Because the solder balls are too small for direct measurement of their stresses, FEA is used for obtaining the stresses instead. Thus, the real displacements in the vibration test are then inputted to the FEA model when performing the stress analysis. Consequently, the stress versus failure cycles (S–N) curve is constructed by correlating both the obtained stresses on the solder balls and the number of failure cycles in the vibration test. Furthermore, the Miner’s rule is applied in calculating the fatigue damage index for those test components when failed. Finally, a formula for the prediction of the component failure cycle is deduced from all these procedures studied. It is also examined later by firstly predicting the fatigue failure cycle of a component and then conducting a vibration test for the same component for the verification purposes. The field test results have proven to be consistent with predicted results. It is then believed that the methodology is effective in predicting component’s life and may be applied further in improving the reliability of electronic systems. 2007 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Fatigue Life in Notched Specimens Using Multiaxial Fatigue Criteria

In this research, the effects of notch shape on the fatigue strength of 2024-T3 aluminum alloy notched specimens have been studied using experimental and multiaxial fatigue analysis. For this purpose, four set of specimens with different notch shape were prepared and then fatigue tests were carried out at various cyclic longitudinal load levels. Load controlled fatigue tests of mentioned specim...

متن کامل

Life Estimation in the Railway Wheels Under the Influence of Residual Stress Field

This paper presents the prediction of fatigue life and crack propagation in the railway wheel due to the stress field caused by mechanical loads and press fitting process of a railway wheel. A 3-D nonlinear stress analysis model has been applied to estimate stress fields of the railway wheel in press fitting process. Finite element analysis model is presented applying the elastic–plastic fin...

متن کامل

Fatigue Life Assessment of Composite Airplane Wing Subjected to Variable Mechanical and Thermal Loads

The purpose of this paper is to estimate the fatigue life of an airplane wing with laminated composite skin, subjected to variable mechanical and thermal loads. To achieve this aim,at first, the three-dimensional model of airplane wing was drawn in CATIA software. Then, by transferring the model to the ABAQUS software, the finite element model of the wing wascreated. H...

متن کامل

Effect of Coating Materials on the Fatigue Behavior of Hip Implants: A Three-dimensional Finite Element Analysis

This study aims to validate, using finite element analysis (FEA), the design concept by comparing the fatigue behavior of hip implant stems coated with composite (carbon/PEEK) and polymeric (PEEK) coating materials corresponding to different human activities: standing up, normal walking and climbing stairs under dynamic loadings to find out which of all these models have a better performance in...

متن کامل

مقایسه موردی روش‌های مختلف تعیین تنش هات‌اسپات‌ در جزئیات سازه کشتی

Fatigue analysis and estimation of safe life of structures that are subjected to cyclic loadings, such as ships and offshore structures is one of the most important steps of structural design. Fatigue failure in the form of crack will start from details and propagate in structure. In steel structures these cracks will started from welds. Most of the methods for fatigue life assessment in welded...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microelectronics Reliability

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2008